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Gambles and Choice Functions

Definition
A gamble is an uncertain reward, i.e. a mapping from the
possibility space Ω to the reward set R.

“probabilityless (horse-)lottery”

Definition
A choice function opt selects, for any set of gambles X and
event A, a subset of X :

∅ 6= opt(X|A) ⊆ X

How to solve sequential decision problems
with a choice function?
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Definition
A normal form solution of a decision tree is a set of these
normal form decisions.

for example
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Factuality: A Counterfactual Example
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The choice between cake and custard
depends on the tree in which the decision is embedded.
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Factuality: Definition

Definition
opt is called factual whenever for every decision tree

restriction(opt(tree)) = opt(restriction(tree))

whenever restriction(tree)’s root node is in opt(tree).

In bargaining theory this principle is called subgame perfection.
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Factuality Theorem

Theorem
opt is factual if and only if it satisfies:

Conditioning property. If {X , Y} ⊆ X and AX = AY , then

X ∈ opt(X|A) ⇐⇒ Y ∈ opt(X|A).

Intersection property. If Y ⊆ X and opt(X|A) ∩ Y 6= ∅, then

opt(Y|A) = opt(X|A) ∩ Y.

Mixture property.

opt(AX ⊕ AZ |B) = A opt(X|A ∩ B)⊕ AZ .

Note: some technical details omitted.

Matthias C. M. Troffaes, Nathan Huntley Factuality and Backward Induction
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Factuality: No Imprecision

Total Preorder Theorem
The intersection property is equivalent to:

Total preorder property. For every event A 6= ∅, there is a
total preorder �A on gambles such that

opt(X|A) = max
�A

(X )

So it is impossible to be at the same time
factual, and
optimal with respect a non-total preference ordering
(such as for instance a partial preference ordering)
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Factuality: What Choice Functions are Factual?
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Factuality: What Can Be Done?

Some types of counterfactuality may not be so bad,
for instance those where backward induction still works
(such as maximality and E-admissibility).
Restrict type of decision trees that you are interested in:
there are sequential decision processes where factuality
can be obtained under substantially weaker assumptions.
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Backward Induction

Idea of backward induction: use the solutions of subtrees
to eliminate many options in the full tree
For weak orders, there is a natural method of backward
induction
For choice functions corresponding to partial orders
(maximality, interval dominance) or more complicated
choice functions (E-admissibility) there are several
possibilities
The goal of our method is to find the normal form solution
induced by opt
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When Can Backward Induction Be Used?

When opt is factual, backward induction will work
When opt is particularly counterfactual, such as in the
cake/custard/scones example, it will not work

What about when the local solution is a superset of the
global solution?
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Necessary and Sufficient Conditions

Theorem
Backward induction works with opt if and only if it satisfies:

Backward conditioning property. If AX = AY and
{X , Y} ⊆ X , then X ∈ opt(X|A) ⇐⇒ Y ∈ opt(X|A)
(subject to some technicalities)
Path independence.

opt

(
n⋃

i=1

Xi

∣∣∣∣∣A
)

= opt

(
n⋃

i=1

opt(Xi |A)

∣∣∣∣∣A
)

Backward mixture property.

opt
(
{AX + AZ : X ∈ X}|B

)
⊆ A opt(X|A ∩ B)⊕ AZ

Note: some technical details omitted.
Matthias C. M. Troffaes, Nathan Huntley Factuality and Backward Induction
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When Can Backward Induction Be Used?

If opt is factual then indeed backward induction works
The opposite implication is not true
If opt satisfies the conditions, then the local solutions are
supersets of the global solution (or they are equal)
The opposite implication is not true (path independence
may still fail)
If the local solutions are subsets of the global solution,
then backward induction may be useful to find a subset of
the global solution

Matthias C. M. Troffaes, Nathan Huntley Factuality and Backward Induction
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Backward Induction: What Choice Functions Work?
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Conclusion

Conditions on opt can be thought of as rationality
constraints on choice
Factuality is sufficient but not necessary for backward
induction
If opt is counterfactual but backward induction works, then
knowing counterfactual information refines one’s optimal
decisions
In this case, no extreme differences between global and
local solutions (unlike many counterfactual weak orders)
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